The exploding-bridgewire detonator (EBW, also known as exploding wire detonator) is a type of detonator used to initiate the detonation reaction in explosive materials, similar to a blasting cap in that it is fired using an electric current. EBWs use a different physical mechanism than blasting caps, using more electricity delivered much more rapidly, and explode in a much more precise timing after the electric current is applied. This has led to their common use in nuclear weapons.[1]
The slapper detonator is a more recent development along similar lines.
Contents |
The EBW was invented by Luis Alvarez and Lawrence Johnston for the Fat Man-type bombs of the Manhattan Project, during their work in Los Alamos National Laboratory. The Fat Man Model 1773 EBW detonators used an unusual, high reliability detonator systems with two EBW "horns" attached to a single booster charge, which then fired each of the 32 explosive lens units.[2] [3]
EBWs were developed as a means of detonating multiple explosive charges simultaneously, mainly for use in plutonium-based nuclear weapons in which a plutonium core (called a “pit”) is compressed very rapidly. This is achieved via conventional explosives placed uniformly around the pit. The implosion must be highly symmetrical or the plutonium would simply be ejected at the low-pressure points. Consequently, the detonators must have very precise timing.
An EBW has two main parts: a piece of fine wire which contacts the explosive, and a “strong” source of high-voltage electricity — strong, in that it holds up under sudden heavy load. When the wire is connected across this voltage, the resulting high current melts and then vaporizes the wire in several microseconds. The resulting shock and heat initiate the high explosive.[1]
This accounts for the heavy cables seen in photos of the Trinity “Gadget”; they had to deliver a large current with little voltage drop, lest the EBW not achieve the phase transition quickly enough.
The precise timing of EBWs is achieved by the detonator using direct physical effects of the vaporized bridgewire to initiate detonation in the detonator’s booster charge. Given a sufficiently high and well known amount of electric current and voltage, the timing of the bridgewire vaporization is both extremely short (a few microseconds) and extremely precise and predictable (standard deviation of time to detonate as low as a few tens of nanoseconds).
Conventional blasting caps use electricity to heat a bridge wire rather than vaporize it, and that heating then causes the primary explosive to detonate. Imprecise contact between the bridgewire and the primary explosive changes how quickly the explosive is heated up, and minor electrical variations in the wire or leads will change how quickly it heats up as well. The heating process typically takes milliseconds to tens of milliseconds to complete and initiate detonation in the primary explosive. This is roughly one to ten thousand times longer and less precise than the EBW electrical vaporization.
Since explosives detonate at typically 7–8 kilometers per second, or 7–8 meters per millisecond, a one millisecond delay in detonation from one side of a nuclear weapon to the other would be longer than the time the detonation would take to cross the weapon. The time precision and consistency of EBWs (0.1 microsecond or less) are roughly enough time for the detonation to move 1 millimeter at most, and for the most precise commercial EBWs this is 0.025 microsecond and about 0.2 mm variation in the detonation wave. This is sufficiently precise for very low tolerance applications such as nuclear weapon explosive lenses.
Due to their common use in nuclear weapons, these devices are subject to the Nuclear Control Authorities in every state, according to the Guidelines for the Export of Nuclear Material, Equipment and Technology. In the US, EBWs are on the US State Department Munitions Control List, and exports are highly regulated.[4]
EBWs have found uses outside nuclear weapons, such as the Titan IV,[5] safety conscious applications where stray electrical currents might detonate normal blasting caps, and applications requiring very precise timing for multiple point commercial blasting in mines or quarries.[6]
The bridgewire is usually made of gold, but platinum or gold/platinum alloys can also be used. The most common commercial bridgewire diameter and length is 1.5 and 40 mils (0.038 mm and 1 mm), but lengths ranging from 10 mils to 100 mils (0.25 mm to 2.5 mm) can be encountered. From the available explosives, only PETN at low densities can be initiated by sufficiently low shock to make its use practical in commercial systems as a part of the EBW initiator. It can be chained with another explosive booster, often a pellet of tetryl, RDX or some PBX (e.g. PBX 9407). Detonators without such booster are called "initial pressing detonators" (IP detonators).
During initiation, the wire heats with the passing current until melting point is reached. The heating rate is high enough that the liquid metal has no time to flow away, and heats further until it vaporizes. During this phase the electrical resistance of the bridgewire assembly rises. Then an electric arc forms in the metal vapor, leading to drop of electrical resistance and sharp growth of the current, quick further heating of the ionized metal vapor, and formation of a shock wave. To achieve the melting and subsequent vaporizing of the wire in time sufficiently short to create a shock wave, current rise rate of at least 100 amperes per microsecond is required.
If a current is supplied in lower rate, the bridge may burn, maybe with deflagrating the PETN pellet, but will not cause detonation. PETN-containing EBWs are also relatively insensitive to a static electricity discharge. Their use is limited by the thermal stability range of PETN. (Cf. slapper detonators, which can use high density hexanitrostilbene, allowing their use in temperatures up to almost 300 °C and at both vacuum and at high pressures.)
The EBW and the slapper detonator are the safest known types of detonators, as only a very high-current fast-rise pulse can successfully trigger them. However, they require a bulky power source for the current surges required. The extremely short rise times are usually achieved by discharging a low-inductance, high-capacitance, high-voltage capacitor (e.g. oil-filled, Mylar-foil, or ceramic) through a suitable switch (spark gap, thyratron, krytron, etc.) into the bridge wire. The ballpark figures are 5 kilovolt and 1 microfarad rating for the capacitor, and the peak current required ranges between 500 and 1000 amperes. The wire used in the bridge tends to be highly pure gold or platinum, 0.02–-0.05 mm in diameter, and 1 mm long. The high voltage may be generated using a Marx generator. Low-impedance capacitors and low-impedance coaxial cables are required to achieve the necessary current rise rate.
A possible alternative for bulky (*see note below) capacitors is the flux compression generator. When fired, it creates a strong electromagnetic pulse, which is inductively coupled into one or more secondary coils connected to the bridge wires or slapper foils.
In a fission bomb the same or similar circuit is used for powering the neutron trigger, the additional booster source of fission neutrons.
The energy in such a capacitor would be 0.5xCxV2, which for the above mentioned cap is 12.5J. The capacitor would be small even if a low energy density one was used (soda can size).
By comparison, a defibrillator delivers ~200J from 2Kv and perhaps 20 uF.[7] The flash-strobe in a disposable camera is typically 3J from a 300V capacitor of 100uF.